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Methods of Assurance

Static DynamicHybrid

Testing

assert()

Monitors, watchdogs

Types

Proofs

Static Analysers

Model Checkers

Contracts

Gradual Types

Static means of assurance analyse a program without running it.

2



Static Assurance Phantom Types FIN

Methods of Assurance

Static DynamicHybrid

Testing

assert()

Monitors, watchdogs

Types

Proofs

Static Analysers

Model Checkers

Contracts

Gradual Types

Static means of assurance analyse a program without running it.

3



Static Assurance Phantom Types FIN

Methods of Assurance

Static DynamicHybrid

Testing

assert()

Monitors, watchdogs

Types

Proofs

Static Analysers

Model Checkers

Contracts

Gradual Types

Static means of assurance analyse a program without running it.

4



Static Assurance Phantom Types FIN

Static vs. Dynamic

Static checks can be exhaustive.

Exhaustivity

An exhaustive check is a check that is able to analyse all possible
executions of a program.

However, some properties cannot be checked statically in
general (halting problem), or are intractable to feasibly check
statically (state space explosion).

Dynamic checks cannot be exhaustive, but can be used to
check some properties where static methods are unsuitable.
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Compiler Integration

Most static and all dynamic methods of assurance are not
integrated into the compilation process.

You can compile and run your program even if it fails tests.

Your proofs can diverge from your implementation.

Types

Because types are integrated into the compiler, they cannot
diverge from the source code. This means that type signatures are
a kind of machine-checked documentation for your code.
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Static Checks are Possible

Theorem (H. G. Rice)

All non-trivial properties of partial computable functions N → N
are undecidable. A property is non-trivial if it is neither true for
every partial computable function, nor false for every partial
computable function.

When you have a property of a program, it may be:

semantic: about the function computed by the program

syntactic: about the program text

Syntactic properties may be decidable; by Rice’s theorem semantic
ones aren’t. But syntactic properties can imply semantic properties.
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Types

Types are the most widely used kind of formal verification in
programming today.

They are checked automatically by the compiler.

They can be extended to encompass properties and proof
systems with very high expressivity (covered next week).

They are an exhaustive analysis.

In the next two weeks, we’ll look at techniques to encode various
correctness conditions inside Haskell’s type system.

15



Static Assurance Phantom Types FIN

Types

Types are the most widely used kind of formal verification in
programming today.

They are checked automatically by the compiler.

They can be extended to encompass properties and proof
systems with very high expressivity (covered next week).

They are an exhaustive analysis.

In the next two weeks, we’ll look at techniques to encode various
correctness conditions inside Haskell’s type system.

16



Static Assurance Phantom Types FIN

Phantom Types

We’ll start with Phantom Types.
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Units of Measure

In 1999, badly written software confusing units of measure (U.S.
Customary unit of force Pounds and SI/Metric unit of force
Newtons) caused the Mars Climate Orbiter to burn up on
atmospheric entry.

Demo 1: Units of Measure
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Phantom Types

Definition

A phantom type is a data type that has a type parameter which
does not occur in the type of any argument to any of its
constructor.

Examples:

data DoubleUnit u = DoubleUnit Double

data NestedList r a = NestedList [[a]]

Non-examples:

data Maybe a = Nothing | Just a

data NamedMaybe e = NM String (Maybe e)

Borderline but non-example:

data StringWith r = Nil | Cons Char (StringWith r)
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Phantom Types

We can use this parameter to track what data invariants have
been established about a value.

We can use this parameter to track information about the
representation (e.g. units of measure).

There are some non-use-cases where regular old data types
are preferable: the ”database IDs” example you see all over
the Internet is one such.

Demo 2: Student IDs
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Datatype Promotion

data UG

data PG

data StudentID x = ZID Int

Defining empty data types for our tags is untyped. We can have
StudentID UG, but also StudentID String.

Recall

Haskell types themselves have types, called kinds. Can we make
the kind of our tag types more precise than *?

The DataKinds language extension lets us use data types as kinds:

{-# LANGUAGE DataKinds, KindSignatures #-}

data Stream = UG | PG

data StudentID (x :: Stream) = SID Int

-- rest as before
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Making Illegal States Unrepresentable

If time, more demos!
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FIN

1 Thanks!
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